An identity function is defined as a function in which the domain values do not change at all. F(x)=x.
Today we learned a few of the many identities..
Reciprocal Identities
csc(x)= 1/sin(x) sec(x)=1/cos(x) cot(x)=1/tan(x) sin(x)=1/csc(x) tan(x)=1/cotan(x)
Quotient Identities
Pythagorean Identities
sin²(x)+cos²(x)=1 tan²(x)+1=sec²(x) cotan(x)+1=csc²(x)
Even/Odd Identities
sin(-x)=-sine(x) csc(-x)=-csc(x) cos(-x)=cos(x) sec(-x)=sec(x) tan(-x)=-tan(x)
cotan(-x)=-cotan(x)
Co-Function Identities
sin(x)=cos(π/2-(x)) cos(x)=(pi/2-(x))
tan(x)=cotan(pi/2-(x))
sec(x)=csc(pi/2-(x))
csc(x)=sec(pi/2-(x))
cotan(x)=tan(pi/2-(x))
No comments:
Post a Comment